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We report on searches for leptoquarks using approximately 100 pb−1 of data col-
lected by CDF and DØ during Run I at the Tevatron. We also present searches
for resonantly-produced leptoquarks that arise in technicolor models. Prospects
for future leptoquark searches using Run II data are also discussed.

1 Introduction

Leptoquarks are hypothetical bosons that carry both lepton and baryon num-
ber and that arise in many extensions of the Standard Model. They may be
produced in pairs in pp collisions with a cross section essentially independent
of the Yukawa coupling to a lepton and quark. The branching fraction to a
charged lepton, denoted by β, is model-dependent.

Searches for the pair production of first, second and third generation lepto-
quarks by the CDF and DØ experiments—using data collected during Run I at
the Tevatron at

√
s = 1.8 TeV—are described briefly in the following sections.

Since no evidence for leptoquark production has been observed, CDF and DØ
have set 95% CL upper limits on the production cross section for various lepto-
quarks and translated these limits into lower limits on leptoquark mass using
the NLO theoretical prediction1 for scalar leptoquarks and the LO predictions
for vector leptoquarks with Yang-Mills and minimal vector couplings. These
mass limits are summarized in Table 1 rather than included in the text.

2 First Generation Limits

CDF has published results 2 on the eeqq signature using 110 pb−1 of data,
whereas DØ has searched 3 for eeqq, eνqq, and ννqq using 123, 115, and
7.4 pb−1 respectively. The selection requirements for all three signatures,
in general, are that electrons must have ET > 20–25 GeV, jets must have
ET > 15–30 GeV, and neutrinos are inferred from E/T > 30–40 GeV. Principal
backgrounds arise from Drell-Yan production of electrons (plus jets) for the
eeqq channel, as well as W , Z, and top production for the other channels.
The observations made by both experiments are consistent with background
expectations.
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Table 1: Leptoquark lower mass limits (GeV/c2) from the Tevatron at the 95% CL.

β Scalar Yang-Mills Minimal Vector Comments

First Generation
1 242 − − Combined CDF/DØ
1 213 − − CDF eeqq channel
1 225 340 290 DØ eeqq channel

1/2 204 325 275 DØ combined
0 79 200 145 DØ ννqq channel

Second Generation
1 202 − − CDF µµqq channel

1/2 160 − − CDF µµqq channel
0 123 222 171 CDF ννcc channel
1 200 325 275 DØ µµqq channel

1/2 180 310 260 DØ combined
0 79 205 160 DØ ννqq channel

Third Generation
1 99 225 170 CDF ττbb channel
0 148 250 199 CDF ννbb channel
0 94 216 148 DØ ννbb channel

3 Second and Third Generation Limits

Both the CDF and DØ experiments have searched for second and third genera-
tion leptoquarks by tagging muons and taus in the final state4−7. Of these, we
describe here only the DØ search for second generation leptoquarks in the µµqq
and µνqq channels 6. The single muon (dimuon) analysis requires muons with
pT > 25 (20) GeV. Two jets with ET > 15 (20) GeV are required. A cut on the
event sphericity in the c.o.m. of all jets and muons is applied in the dimuon
search, whereas E/T > 30 GeV is required in the single muon analysis. In both
searches, neural networks are applied for the final selection using the kinematic
information from the muons, jets, and E/T . No leptoquark candidates survive.
The final exclusion in the β vs. mass plane is shown in Fig. 1.

In contrast to these searches sensitive to β > 0, CDF has searched 8 for
second and third generation leptoquarks which decay to νc and νb, respectively,
by identifying heavy-flavor jets with a measurable lifetime in the silicon vertex
detector. The principal selection requirement is E/T > 40 GeV. Two or three
jets in the event with ET > 15 GeV and |η| < 2 are required . A lepton veto
is applied. The primary background is the production of W+jets.

A cut on the “jet probability” 9 is applied to tag c- and b-jets. The jet
probability is constructed from the probabilities of individual tracks in the
jet to have originated from the primary collision vertex, using the impact
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Figure 1: DØ exclusion of β vs. second generation leptoquark mass at 95% CL.

parameter and its resolution measured by the CDF silicon vertex detector.
Jets without a heavy-flavor component have a jet probability which is flat from
0 to 1, whereas c- and b-jets have a jet probability that peaks at 0. For second
(third) generation leptoquarks, the jet probability cut is P < 5% (P < 1%),
which selects 11 (5) events in 88 pb−1 of data compared to a background
expectation of 14.5 ± 4.2 (5.8 ± 1.8) events. Limits on the production cross
section are shown in Fig. 2.

4 Resonantly Produced Leptoquarks

Leptoquark pair production could be enhanced from the decay of technicolor
resonances. One formulation of technicolor 10 provides a rich spectrum of
technirhos (ρT ) and technipions (πT ) starting from an isodoublet of color triplet
techniquarks and an isodoublet of color singlet technileptons. The color octet
ρT s have the same quantum numbers as the gluon, and thus may be produced
through the s-channel in pp collisions. The ρT decays into two πT s (some of
which are color triplets), which in turn decay preferentially into heavy flavors.
Thus, the null result of the second and third generation leptoquark search 8

constrains this technicolor model. Figure 2 shows the 95% CL exclusion of the
πT mass vs. ρT mass for πT → νb decays. The exclusion depends somewhat
on the mass splitting (∆M) between the color octet and triplet πT s.

5 Future Prospects

Run II at the Tevatron is scheduled to begin March, 2001. Within the first
two years of operation, an integrated luminosity of 2 fb−1 is expected to be
delivered at an increased center-of-mass energy of 2 TeV. By the time the LHC
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Figure 2: Left: CDF upper limits at the 95% CL on the production cross section for LQ2 →
νµc and LQ3 → ντ b along with the theoretical predictions for β = 0. Right: CDF 95% CL
exclusion regions in the πT mass vs. ρT mass plane for πT → νb decays.

begins operation, the Tevatron may have delivered a total of 30 fb−1.
If we assume that first-generation leptoquarks are not discovered and no

events are observed at high mass, then the Tevatron experiments should be
able to set a lower limit 11 on the scalar leptoquark mass of approximately
300 GeV/c2 (375 GeV/c2) for 1 fb−1 (10 fb−1) of data and for β = 1. For
the case of scalar leptoquarks of the third-generation with β = 0, limits should
improve to 220 GeV/c2 with 2 fb−1 of data. Likewise, limits on the color-octet
ρT should improve to about 1 TeV/c2, depending on the πT mass splitting.
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